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LIST OF ABBREVIATIONS USED IN THIS DOCUMENT

Abbreviation or Acronym

Definition

ACS

Active Cooling System

ASME American Society of Mechanical Engineers

AVR Arbeitsgemeinschaft Versuchsreaktor
(German for Jointly-operated Prototype
Reactor)

CCS Core Conditioning System

DLOFC Depressurized Loss of Forced Cooling

FHSS Fuel Handling and Storage System

HTR High Temperature Reactor

HTR-Modul High Temperature Modular Reactor (German
high-temperature modular reactor design — not
built)

MWD/MT Megawatt days per metric ton

PBMR Pebble Bed Modular Reactor

PCU Power Conversion Unit

PFC-3D Engineering analysis code

PLOFC Pressurized Loss of Forced Cooling

RCCS Reactor Cavity Cooling System

RCS Reactivity Control System

RCSS Reactivity control system including both RCS
and RSS

RPV Reactor Pressure Vessel

RPVCS Reactor Pressure Vessel Conditioning System

RSS Reserve Shutdown System (Neutron absorber
system using borated spheres)

RUCS Reactor Unit Conditioning System

SBS Start-up Blower System

STAR-CD analytical code

THTR Thorium High Temperature Reactor

UHS Ultimate Heat Sink

VSOP Very Special Old Program (reactor analysis

code)
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1. INTRODUCTION

The purpose of this document is to provide a summary description of the Pebble Bed Modular Reactor

(PBMR) design and heat removal mechanisms.

The plant design is in the basic design phase. Detailed calculations have been performed as part of
examining the feasibility of the project using the basic design considered in that study. Results from
some of these calculations are presented in this report. Changes to design details and parameters are
likely to be made as part of the detailed design process, which is just beginning. These changes will
likely affect the analytical results. Numerical values presented in this report are considered to reflect
the order of magnitude of values that will be seen in the final design, but final design calculations have

yet to be performed. The general layout and operating characteristics, as described herein, are not

expected to change.

Section 2 of this report describes the general configuration of PBMR plant systems. It also provides a

more detailed, but still summary, description of core design.

Section 3 of this report describes the systems and natural processes by which heat will be removed

from the PBMR core under normal operating and upset conditions.
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2. PLANT DESIGN

21 GENERAL

The PBMR builds upon design and operational experience obtained by the Germans in operating
similar reactors (AVR and Thorium High Temperature Reactor [THTR]). The High Temperature
Modular Reactor (HTR-Modul) unit design was used as a reference in developing the conceptual
PBMR design on which feasibility was evaluated. The characteristics of inherent safety and passive

heat removal are emphasized in the plant design.
Several changes were made from the controversial HTR design. These include:
e Control elements have been placed in the reflector rather than in the fueled region.

e The height/diameter ratio of the core has been changed from 1:1 to approximately 3:1. This
change improves the capability to remove decay heat passively. Caution was exercised to avoid

exceeding a length that would introduce reactivity instabilities due to Xe poison swing.

e A central graphite column (reflector) is used. This permits achieving greater power levels than the

80 MW of HTR-Modul.

These changes result in additional height and a slender, tall reactor. The resulting annular core and
central reflector results in the peak neutron flux being displaced towards the outer reflector, where the

control elements are located.

The core diameter is 3.5 meters, reflector -to-reflector. The central column is 1.75 meters in diameter.

The effective height of the core is approximately 8.5 meters.
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2.2 Primary Coolant Flow Circuit
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Figure 2.2-1: PBMR SEMI-SCHEMATIC

Figure 2.2-1 presents a conceptual schematic of the PBMR reactor plant. The major components
include the Reactor Pressure Vessel (RPV), high- and low-pressure turbo compressors, the power
turbine and generator, recuperator and pre- and intercoolers. Support systems, used during shutdown
and startup periods, include the Start-up Blower System (SBS), Core Conditioning System (CCS), and
Reactor Pressure Vessel Conditioning System (RPVCS). The latter two systems are combined in a
single unit called the Reactor Unit Conditioning System (RUCS).

Under normal operation, helium gas enters the core through slits at the top. It flows downward,
through the pebble bed of the annular core and through the central reflector, and exits into a gas
plenum at the bottom. Gas temperatures are expected to vary considerably at the core outlet, ranging
from the order of 650 °C beneath the central reflector to 900 to 1100 °C below the fueled region.
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Helium mass flow rate is higher in the fueled region (a design feature intended to reduce erosion of
the coolant channels in the upper graphite structures) . The mixed mean core outlet temperature is 900
°C. The final design will include a mixing chamber, to mix the helium and provide a more uniform outlet
temperature. This action is being taken to avoid stratification of the helium flow and resulting

operational concerns, including blade striping of the turbo units.

Helium gas exiting the outlet plenum flows into the high-pressure turbo compressor and expands. It
then passes into the low-pressure turbo compressor and the power turbine. After expansion in the
power turbine, it returns to the reactor core via the recuperator, the pre- and intercoolers and again the

recuperator. Helium inventory is adjusted to accommodate changes in power level, using a system not

depicted on Figure 2.2-1.

The cooling system serving the secondary sides of the two coolers is a pumped water system. The
pressure in the cooling system is just above atmospheric. Helium operating pressure is on the order of

42 to 50 bar, preventing any water ingress in the event of leaks in the heat exchangers.

The SBS is an in-line blower used to charge the Brayton cycle during startup operations. Bypass
valves serve to bypass the high- and low-pressure compressors during startup and some transient

conditions. The SBS is capable of operating up to a core power of approximately 20 percent.

The RPVCS circulates gas between the core barrel and the RPV. This serves to maintain the RPV

wall at a more even temperature, eliminating hot spots.

The CCS is a small forced-cooling system capable of removing full decay heat. It is used during
maintenance periods in which the RPV must be isolated from the remainder of the Power Conversion

Unit (PCU).

The Reactor Cavity Cooling System (RCCS) (not depicted) consists of 45 tanks arrayed around the

reactor vessel in the reactor cavity.
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2.3 Reactor Pressure Vessel
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Figure 2.3-1: PBMR RPV LAYOUT

Figure 2.3-1 depicts the physical layout of the RPV. The feasibility study design is depicted. Some
design improvements have been made since this drawing was prepared. Principal among these is
elimination of a carbon thermal barrier, depicted on this figure, protecting the RPV wall. This thermal
barrier will not be incorporated in the final design, since material temperatures are not expected to

exceed Code Case limits.
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An inlet plenum at the bottom connects to the piping returning helium from the PCU. Radial flow

channels are used to direct helium preferentially into the annular core, as described above.

The Reactivity Control System (RCS) includes control rods and small absorber spheres, both with B,C
absorber. Channels for the rods and absorber spheres are situated in the reflector, at the location of
the flux peak. There are a total of 35 borings in the outer reflector for reactivity control, 18 for control
rods and 17 for absorber spheres. The control rods are chain-driven, consisting of two 9 -rod banks of

half-length rods (described further below).

Fuel and moderator spheres are loaded via loading tubes arrayed around the top of the reactor vessel.
There are 9 fuel loading tubes and a single moderator tube for the central reflector column. Fuel and

moderator spheres are discharged into a chute at the bottom of the reactor vessel.
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2.4 Fuel Handling and Storage System
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Figure 2.4-1: PBMR FHSS Schematic

The Fuel Handling and Storage System (FHSS) is depicted in Figure 2.4-1. The system directs
spheres removed from the core through a series of valve blocks. The design of the valve blocks is
taken directly from the German High Temperature Reactor (HTR) design, and was used successfully
on THTR. The system is designed for high-pressure operation, approximately 70 bars. The system
collects discharged spheres, monitors them to discriminate between fuel and moderator, and to

determine burn-up of fuel spheres, and routes them to one of several destinations.
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The decay time to the monitoring station in the first valve block is approximately 40 hours. This allows
decay of short-lived fission products. A gross gamma measurement can therefore be used to
discriminate between fuel and moderator spheres. A second measurement uses a gamma

spectrometer and Germanium detector to identify the cesium peak and determine burn -up of fuel

spheres.

Based on the results of the monitoring in the first valve block, moderator spheres are recycled, re-
usable fuel is returned to the core, and spent fuel is routed to the spent fuel tanks. Moderator spheres
are subjected to a second measurement to verify that fuel has not been misrouted into this circuit. Any

fuel detected in this block can be re-routed.

The precise criteria for discriminating between “spent’ fuel and re- usable fuel are still being
determined. Additional monitoring, for other peaks or using spiking, may be needed for the initial, low-
enriched fuel spheres. In addition, the specific increment below 80,000 MWD/MT that will be used to
determine whether a fuel sphere can be recycled or removed from the cycle is yet to be determined.
Consideration is being given to reducing the planned number of cycles for an individual pebble from

10, as considered in the feasibility design study, to 6. This will also have an effect on core flux

peaking.

Adjusting the rate at which spheres are discharged from the core, and thus the number of cycles
expected for an individual fuel sphere, can be done in a number of ways. One or two discharge
channels can be used. The speed of the unloading machine can be adjusted. Unloading can be

conducted on a varying number of shifts.
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2.5 Pebble Behavior in The Core

Filling the Vessel

Figure 2.5-1: FILLING THE VESSEL

Pebble flow experiments were conducted in Germany to improve knowledge of how they flow through
the core. Flow has been further assessed in South Africa using a computer simulation. Model results
were compared with the German experiments and were found to be within 10 percent. The simulation
model considers the total core. It models each individual pellet. The resulting calculation was
performed on four parallel DEC alpha computers and required 4 months to perform. Benchmarking of
pebble flow is still under consideration, but some method of validation and verification must be applied
to the VSOP code pebble flow model.
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Core Sphere Flow Analysis

‘—TA—“T!WT““

Detailed analysis of the dynamics of »

the spheres in the upper core volume 5

are completed. The behavior of the T/T

spheres in this region determines the conl

formation of the two zone core with a | ’

mixing zone. o e a*
e 4

Figure 2.5-2: CORE SPHERE FLOW ANALYSIS

Loading of the core to criticality will start by loading from the top onto a graphite bed. The annular core
and central reflector column will form based on the positioning of pebbles as loaded. The size of the
central reflector, and of the mixing zone, is strongly defined by the manner in which pebbles are
loaded. The fuel handling system design “zeros” the velocity of each sphere before it is dropped, in

order to minimize bounce and potential effects on the size of the mixing zone.
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Figure 2.5-3: CORE SPHERE FLOW
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[PROPRIETARY Figure intentionally Removed]

Figure 2.5-4: FLOW LINES

Figure 2.5-4 [PROPIETARY - Figure note intentionally removed]
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Local Distribution vs. Core
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Figure 2.5-5: LOCAL DISTRIBUTION VS. CORE RADIUS

The results of the calculation show that there is a clearly defined central column throughout the height
of the core, with a mixing zone of known quality. The mixing zone is calculated to have a thickness of
22 cm. The centre of the zone is at a theoretical location of 87.5 cm from the centre of the re actor
vessel. Figure 2.5-5 displays the distribution of fuel and moderator within the mixing zone. The overall
ratio of graphite to fuel in the mixing zone is 48.5/51.5. The calculations showed no individual or group

of fuel pebbles within the central column, nor graphite within the fueled zone, outside of the mixing

zone.

2.6 CORE ANALYSIS

The VSOP code system is used for the numerical simulation of the physics of the reactor. It requires
input models for fuel, geometry, pebble flow, and core composition. Calculations are performed for
equilibrium and/or initial core conditions. The calculation is done in time steps, and the status is

preserved for future calculations subsequent time steps.

Calculations have been performed using 5 channels. Twenty percent of the total volume of spheres

are assumed loaded in each channel: graphite only in channel 1, a 50/50 mixture of fuel and graphite

Revision 1 2/11/2001 Page 19 of 40



in channel 2, and fuel alone in channel 3. After mixing, spheres are assumed to be mixed and

available for reloading in any appropriate channel.

VSOP RU Model
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Figure 2.6-1: VSOP REACTOR UNIT MODEL

Figure 2.6-1 shows the reactor core, core structures and vessel model used in the VSOP calculations

performed during the feasibility study. The reactor is shown on its side, and includes the thermal

shield— then considered in the calculations, but since eliminated from the design. [PROPRIETARY

Information regarding modeling results are intentionally removed].

The calculation logic used in VSOP is graphically depicted in Figure 2.6-2.
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Calculational Logic
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Figure 2.6-2: CALCULATIONAL LOGIC

The temperature coefficients of reactivity calculated for the PBMR are provided in Table 2.6-1. The
overall temperature coefficient is strongly negative. (The coefficients, as derived, are isothermal, which

is conservative. Further refinement will be made during detailed design).
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Table 2.6-1: TEMPERATURE COEFFICIENTS

VSOP Option 2D 3D

Temperature coefficients at operating Ak./°C

conditions:

Fuel (Doppler coefficient of 2°°U) -3.28 E-5 -3.25E-5
Moderator in fuel part of the core -3.30 E-5 -340 E-5
Central Graphite Zone +0.93 E-5 +0.82 E-5
Outer reflectors +1.48 E-5 +1.40 E-5
Total -4.17 E-5 -4 43 E-5

Damage at the reflector interface is a function of fast flux, and thus that parameter is calculated.

Results for various axial positions are displayed in Figure 2.6-3. The radial thermal and fast flux

profiles at 415 cm from the top of the core are shown in Figure 2.6-4.
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Figure 2.6-3: RADIAL FLUX DISTRIBUTION AT VARIOUS AXIAL POSITIONS
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Radial Thermal Flux Distribution at
415 cm from Top of Core
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Figure 2.6-4: RADIAL THERMAL FLUS DISTRIBUTION AT 415 cm FROM TOP OF CORE

2.7 Reactivity Control

The Reactivity Control and Shutdown System (RCSS) consists of control rods called the RCS and
Reserve Shutdown System (RSS) using small absorber spheres. The RCS has 2 banks of 9 half-
length control rods each. The RSS, when discharged, fills 17 reflector borings with absorber spheres
for the full height of the core. The inserted position of both elements is depicted in Figure 2.7-1. The

upper bank of control rods shadows the lower, as depicted on the figure. The effectiveness of each of

the RCSS elements is displayed in Figure 2.7-2.
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RCSS CHARACTERISTICS
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Table 2.7-1: CONTROL AND SHUTDOWN REACTIVITY BALANCE

Requirements Akey/k Value
Operation -> 50 °C +0.0318
Decay of Xe-135 +0.0490
Decay of other isotopes over 30 days Neglected

conservatively

Xe-override (100-40-100%) +0.012
Uncertainties +0.008
Total +0.101
Capability (9x5.823m top & 9x5.823 bottom) Ak.x'k
9 top RCS in side reflector -0.0429
9 bottom RCS in side reflector -0.0341
16 RSS in reflector (18 RSS)’ -0.0540 (-0.0595)
Uncertainty +0.0066 (+0.0068)
Total -0.1244 (-0.1297)
Reactivity Shutdown Margin -0.0234 (-0.0287)

"Note: Due to symmetry of the calculation model, the reactivity value of 17 RSS must be interpolated
from the calculated value of 16 and 18 RSS. An odd number of RSS are present, because the boring

above the helium outlet channel cannot be used.

Uncertainties of 8 and 5 percent are used in the reactivity balance (Table 2.7-1 ) based on the German

practice. They are to be verified experimentally during startup.

For a xenon transient, the reactor is designed to assure that complete withdrawal of the 9 partially
inserted control rod bank would not result in core temperatures exceeding 1600 °C. The reactivity
worth of the rods is therefore limited to 1.3% Ak/k. This means that the maximum xenon transient that

can be overridden is a 100-40-100 percent load following transient. The profile of that transient is

shown in Figure 2.7-3.
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Figure 2.7-3: XENON TRANSIENT

The calculation of control rod reactivity worth is difficult and PBMR places big emphasis on proper
validation of the results. The PBMR project is presently using the ASTRA facility in Russia to validate
calculational results. The facility’s quality control program has been updated and validation results

have been quite successful. The facility will also be used to evaluate the effect of a skewed mixing

Zone.
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3. HEAT REMOVAL

3.1 General

The PBMR uses active cooling during startup, normal operation, planned shutdown, and maintenance
shutdowns. Active cooling is defined, for this purpose as a pumped loop with an interface heat

exchanger and rejection of heat to the sea or in forced draught cooling towers to atmosphere as a

back-up system.

The Ultimate Heat Sink (UHS) for the PBMR is the atmosphere. Rejection of heat to the UHS in
accident conditions is described below. Heat rejection under normal operating conditions is to the sea,

for the demonstration plant, or to the nearby cooling water body for follow-on units.

3.2 Normal Operation

The Active Cooling System (ACS) is coupled to the secondary side of the intercooler and pre-cooler,
as shown in Figure 2.2-1. The RUCS, which consists of the RPVCS and the CCS, is also served by
the ACS. The RUCS was discussed in Section 2.2. In the startup mode, the reactor is cooled by the
SBS. The SBS is used until the Brayton cycle, with its turbo machines, bootstraps. The SBS is
electrically driven. It can operate up to 20 percent reactor power and an average core temperature of
750 — 900 °C. Heat removal is via the pre- and inter-coolers. Heat removal is regulated by blower

speed and bypass valve manipulation. The bypass valves serve to bypass the turbo machines.

The Brayton cycle removes heat by cycling the helium through the core and the PCU. The heat
removed is proportional to the helium inventory. The reactor power will adjust to the amount of the

helium inventory. Below 40 percent of full power, control will be by opening the compressor bypass

valves.

3.3 Shutdowns

For planned shutdowns, reducing the helium inventory decreases fluidic power. The reactor is shut
down and separated from the grid. Opening the bypass valves collapses the Brayton cycle. The SBS

is activated to remove decay heat via the active system.

On a scram, opening the bypass valves collapses the Brayton cycle. On load rejection, the generator
bypass valves prevent overspeed, the reactor is run back, and the helium inventory is reduced. Within

a few minutes, the SBS is started for continued active heat removal.
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During a maintenance outage, heat removal is transferred to the RUCS at a convenient point. Primary
system pressure is reduced to atmospheric in order to open the remainder of the PCU for
maintenance. Shutoff valves at the entrance to the high-pressure turbo compressor and the coolant
return lines (referred to as maintenance valves) are used to isolate the RPV from the remainder of the

PCU. Thereby, the core is physically separated from the systems to be maintained.

The RUCS is a cooling system with a limited water inventory. If water should leak into the helium
coolant during maintenance the volume is small and the consequences will be insignificant. The
system is capable of, and will be used to, cooling the core to temperatures needed during

maintenance operations.

3.4 Reactor Cavity Cooling System

The RPV cooling under normal operation and accident conditions in which the PCU active cooling
system may not be available is via conduction, convection, and thermal radiation through the vessel
wall to the RCCS. The RCCS consists of 45 tanks arrayed around the perimeter of the reactor cavity

as shown in Figure 3.4-1. The system is operated as three separate loops of 15 tanks each.

In its active mode, coolant from each loop is pumped and rejects heat, via heat exchangers, to the
sea. If that heat rejection path fails, then heat is rejected to a cooling tower on the roof of the building.
(Failing that, the system would operate in its passive mode, as described below). Anti-syphoning
devices are used, as shown in Figure 3.4-1, and no pipes enter the tanks other than at the top,
thereby avoiding loss of coolant. Each loop can remove 50 percent of decay heat, providing

redundancy in the system.

There is some heat loss through the RPV during normal operations. That heat is also removed via the

RCCS. Without the Brayton cycle, SBS, or RUCS, all cooling is provided by the RCCS.
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Arrangement of Pipes and Headers

Bursting discs release vapor from cavity

63%66@66 bﬁaﬁa

BURSTING DISC
STEAM RELEASE PORTS

T
ANTLSYPHON HOLES - I

Uil

Figure 3.4-1: ARRANGEMENT OF PIPES AND HEADERS

If the active system removing heat from the RCCS fails, the system goes into its passive mode.
Temperatures in the tanks will increase until boiling begins. Subsequent increases in pressure in the
tanks will result in bursting of rupture discs, as shown in Figure 3.4-1. Water vapour from subsequent
boiling is released directly to the atmosphere (UHS). There is sufficient water inventory in the RCCS
tanks to remove decay heat for five days in this mode. Tank level is monitored as part of the post-
event monitoring system. The RPV and core barrel temperatures remain within Code Case limits

during such an event. There is no need for immediate operator actions to assure core cooling.

3.5 Water and Air Ingress

Ingress of water and air into the core poses operational and potential safety concerns. The potential
for water ingress is minimized by design. The water/gas interface during normal operations is the heat
exchangers in the pre- and inter-cooler. There is a large pressure difference, with the helium pressure
significantly exceeding the water pressure. This will prevent water ingress in the event of any leaks in

the heat exchanger, reducing the probability of water ingress to near zero.

Cooling of an isolated RPV with the RUCS involves pressures on either side of the heat exchanger
boundary that are approximately equal. Water ingress is possible in the event of leaks in this heat

exchanger. Gross in-leakage would not be expected, since there is no pressure differential providing a
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significant driving head. The total water inventory of the RUCS is nevertheless kept small, to minimize

the consequences (e.g., corrosion and reactivity) from water ingress.

The ingress of air into the reactor is a hypothetical event associated with a Depressurized Loss of
Forced Cooling (DLOFC) event. The confinement construction is such that the amount of oxygen
available in the event of a DLOFC is limited. A chimney effect, admitting air into the primary coolant
boundary, is only possible if there are two openings into the primary circuit one at the bottom and one
at the top an unlikely scenario. It is possible for some air to enter the system via stratified flow in a

single opening, allowing both outflow of helium and inflow of air. Such situations have not yet been

analyzed in any detail.

3.6 Analyses of Heat Removal Capabilities

Temperature calculations have been performed using a neutronics code coupled to a heat transport
code (TINTE and VSOP coupled to Thermix and STAR-CD). The calculations evaluate the time-
dependent heat-up of the fuel and core components. Calculations were performed assuming RCCS is

at a constant 60 °C, consistent with its operation in active cooling mode.

PBMR
Depressurised Loss of Forced Cooling
{Temperatures)

1600

1500 £

1400 L

1300 &

C 1200 |

1100

Figure 3.6-1: DEPRESSURIZED LOSS OF FORCED COOLING (TEMPERATURES)

Figure 3.6-1 shows the analytical results for a DLOFC. Average and maximum fuel temperatures are

displayed. Maximum temperature peaks at 1500 °C. This calculation was performed both with control
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rods in and out. There is no distinguishable difference in the maximum or average temperat ures,

attributable to the strong negative temperature coefficient of the reactor.

PBMR-268
DPLOFC
with and without RCCS
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Figure 3.6-2: DLOFC WITH AND WITHOUT RCCS

Figure 3.6-2 shows the effect of RCCS. Maximum and average fuel temperatures are displayed for
the same event (DLOFC) with and without operation of the RCCS. (The latter case essentially
assumes the RCCS tanks are dry in the time of the event). The difference in fuel temperature is very

small. The heat sink in the no-RCCS case is the reactor cavity concrete.
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PBMR
DLOFC T-axial
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Figure 3.6-3: DLOFC T-AXIAL

Figure 3.6-3 presents two sets of curves: one for one hour after a depressurized loss of forced
cooling, and a second for 84 hours after the event. At 84 hours, the core barrel reaches 540 °C. For
type 316 stainless steel, ASME Code Case N-201-4 makes allowance for 1500 °F (815.6 °C) for
certain levels of stress that envelope the PBMR conditions for the core barrel. ASME code case N-
499-1 for SA 508 class 3 forgings allows a maximum temperature of 1000 °F (537 .8 °C) for the RPV
and temperatures and pressures that envelope the PBMR conditions. It should however be noted that

the code case allows a maximum of 1000 hours at temperatures between 800 °F and 1000 °F and

permits only 3 excursions above 800 °F.
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[PROPRIETARY - Figure intentionally removed]

Figure 3.6-4: RPV AND REACTOR CAVITY STRUCTURES
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[PROPRIETARY - Figure intentionally removed]

Figure 3.6-5: MESH USED IN ANALYSIS

Figure 3.6-5 [PROPRIETARY - Figure notes intentionally removed]
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[PROPRIETARY - Figure intentionally removed]

Figure 3.6-6: REACTOR TEMPERATURE DISTRIBUTION PLOFC [PROPRIETARY — Pressure
intentionally removed]
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[PROPRIETARY - Figure intentionally removed]

Figure 3.6-7: REACTOR TEMPERATURE DISTRIBUTION DLOFC [PROPRIETARY - Pressure
intentionally removed]
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RPV Temperatures
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Figure 3.6-8: RPV TEMPERATURES
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AIR TEMPERATURES
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Figure 3.6-9: AIR TEMPERATURES
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CONCRETE TEMPERATURES
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Figure 3.6-10: CONCRETE TEMPERATURES
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Attachment 6

-- Non-Proprietary Version —

“PBMR Heat Removal” Presentation
Dated August 16 2001
25 pages

Submitted March 4, 2002
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PBMR
Depressurised Loss of Forced Cooling
(Temperatures)
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